再谈感应加热的四把火 

豪宇机电有限公司欢迎您

       中山市豪宇机电有限公司

中山市豪宇机电有限公司

       

一个专注感应加热设备的厂家

服务热线:

13680141789 微信同号

18022783964 微信同号

当前位置:豪宇机电有限公司»»» 再谈感应加热的四把火»»»

再谈感应加热的四把火

文章出处:https://www.zs-haoyu.cn 人气:886 views发表时间:2019-07-11

热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。 加热是热处理的重要步骤之一。金属热处理的加热方法很多,金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。 加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度 ,是保证热处理质量的主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得需要的组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间或保温时间很短,而化学热处理的保温时间往往较长。
冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却速度。一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。但还因钢种不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬。
金属热处理工艺大体可分为整体热处理、表面热处理、局部热处理和化学热处理等。 整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火→将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却(冷却速度最慢一般随炉冷却),目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。
常用的退火工艺有:
①完全退火。用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。
②球化退火。用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。
③等温退火。用以降低某些镍、铬含量较高的合金结构钢的高硬度,以进行切削加工。一般先以较快速度冷却到奥氏体最不稳定的温度,保温适当时间,奥氏体转变为托氏体或索氏体,硬度即可降低。
④再结晶退火。用以消除金属线材、薄板在冷拔、冷轧过程中的硬化现象(硬度升高、塑性下降)。加热温度一般为钢开始形成奥氏体的温度以下50~150℃ ,只有这样才能消除加工硬化效应使金属软化。
⑤石墨化退火。用以使含有大量渗碳体的铸铁变成塑性良好的可锻铸铁。工艺操作是将铸件加热到950℃左右 ,保温一定时间后适当冷却 ,使渗碳体分解形成团絮状石墨。
⑥扩散退火。用以使合金铸件化学成分均匀化,提高其使用性能。方法是在不发生熔化的前提下 ,将铸件加热到尽可能高的温度,并长时间保温,待合金中各种元素扩散趋于均匀分布后缓冷。
⑦去应力退火。用以消除钢铁铸件和焊接件的内应力。对于钢铁制品加热后开始形成奥氏体的温度以下100~200℃,保温后在空气中冷却,即可消除内应力。
退火 为了消除塑料制品的内应力或控制结晶过程,将制品加热到适当的温度并保持一定时间,而后慢慢冷却的操作。

正火→将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能。

正火的主要应用范围有:
①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。
②用于中碳钢,可代替调质处理(淬火+高温回火)作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。
③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。
④用于铸钢件,可以细化铸态组织,改善切削加工性能。
⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向。
⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。
⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。
正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+二次渗碳体,且为不连续。
正火与退火的区别
正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速度稍大,组织较细。有些临界冷却速度(见淬火)很小的钢,在空气中冷却就可以使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。钢正火后的硬度比退火高。正火时不必像退火那样使工件随炉冷却,占用炉子时间短,生产效率高,所以在生产中一般尽可能用正火代替退火。
对于含碳量低于0.25%的低碳钢,正火后达到的硬度适中,比退火更便于切削加工,一般均采用正火为切削加工作准备。对含碳量为0.25~0.5%的中碳钢,正火后也可以满足切削加工的要求。对于用这类钢制作的轻载荷零件,正火还可以作为最终热处理。高碳工具钢和轴承钢正火是为了消除组织中的网状碳化物,为球化退火作组织准备。
普通结构零件的最终热处理 ,由于正火后工件比退火状态具有更好的综合力学性能,对于一些受力不大、性能要求不高的普通结构零件可将正火作为最终热处理,以减少工序、节约能源、提高生产效率。此外,对某些大型的或形状较复杂的零件,当淬火有开裂的危险时,正火往往可以代替淬火、回火处理,作为最终热处理。
淬火→钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。

淬火工件的硬度影响了淬火的效果。淬火工件一般采用洛氏硬度计测定其HRC值。淬火的薄硬钢板和表面淬火工件可测定HRA值,而厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计测定其HRC值。 在焊接中碳钢和某些合金钢时,热影响区中可能发生淬火现象而变硬,易形成冷裂纹,这是在焊接过程中要设法防止的。
由于淬火后金属硬而脆,产生的表面残余应力会造成冷裂纹,回火可作为在不影响硬度的基础上,消除冷裂纹的手段之一。
淬火对厚度、直径较小的零件使用比较合适,对于过大的零件,淬火深度不够,渗碳也存在同样问题,此时应考虑在钢材中加入铬等合金来增加强度。
淬火是钢铁材料强化的基本手段之一。钢中马氏体是铁基固溶体组织中最硬的相,故钢件淬火可以获得高硬度、高强度。但是,马氏体的脆性很大,加之淬火后钢件内部有较大的淬火内应力,因而不宜直接应用,必须进行回火。

回火→是工件淬硬后加热到AC1(加热时珠光体向奥氏体转变的开始温度)以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。
回火一般紧接着淬火进行,其目的是:
(a)消除工件淬火时产生的残留应力,防止变形和开裂;
(b)调整工件的硬度、强度、塑性和韧性,达到使用性能要求;
(c)稳定组织与尺寸,保证精度;
(d)改善和提高加工性能。因此,回火是工件获得所需性能的最后一道重要工序。通过淬火和回火的相配合,才可以获得所需的力学性能。
按回火温度范围,回火可分为低温回火、中温回火和高温回火
低温回火
工件在150~250℃进行的回火。
目的是保持淬火工件高的硬度和耐磨性,降低淬火残留应力和脆性
回火后得到回火马氏体,指淬火马氏体低温回火时得到的组织。力学性能:58~64HRC,高的硬度和耐磨性。
应用范围:主要应用于各类高碳钢的工具、刃具、量具、模具、滚动轴承、渗碳及表面淬火的零件等。
中温回火
工件在350~500 ℃之间进行的回火。
目的是得到较高的弹性和屈服点,适当的韧性。回火后得到回火屈氏体,指马氏体回火时形成的铁素体基体内分布着极其细小球状碳化物(或渗碳体)的复相组织。
力学性能:35~50HRC,较高的弹性极限、屈服点和一定的韧性。
应用范围:主要用于弹簧、发条、锻模、冲击工具等。
高温回火
工件在500~650℃以上进行的回火。
目的是得到强度、塑性和韧性都较好的综合力学性能。
回火后得到回火索氏体,指马氏体回火时形成的铁素体基体内分布着细小球状碳化物(包括渗碳体)的复相组织。
力学性能:25~35HRC,较好的综合力学性能。
应用范围:广泛用于各种较重要的受力结构件,如连杆、螺栓、齿轮及轴类零件等。
退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

同类文章排行

最新资讯文章